Mobile: TCL stellt 5G-Smartphone für 400 Euro vor
Das TCL 10 5G ist eines der preisgünstigsten 5G-Smartphones auf dem Markt – und das bei einer guten Ausstattung. (TCL, Smartphone)
Quelle: Golem
Das TCL 10 5G ist eines der preisgünstigsten 5G-Smartphones auf dem Markt – und das bei einer guten Ausstattung. (TCL, Smartphone)
Quelle: Golem
Nach der Verschiebung um unbestimmte Zeit spricht Naughty Dog über die Gründe und die Möglichkeit einer Veröffentlichung nur als Download. (Soundcloud, Sony)
Quelle: Golem
Der Einbruch wegen des Coronavirus dürfte aber den Marktführer Amazon nicht betreffen. (E-Commerce, Studie)
Quelle: Golem
Über eine Konferenz-ID können viele Gäste per Video- und Sprachchat kommunizieren. Das ist schnell und einfach, erinnert aber an Zoom. (Skype, VoIP)
Quelle: Golem
Google Cloud’s Dataproc gives data scientists an easy, scalable, fully managed way to analyze data using Apache Spark. Apache Spark was built for high performance, but data scientists and other teams need an even higher level of performance as more questions and predictions need to be answered using datasets that are rapidly growing.With this in mind, Dataproc now lets you use NVIDIA GPUs to accelerate XGBoost, a common open source software library, in a Spark pipeline. This combination can speed up machine learning development and training up to 44x and reduce costs 14x when using XGBoost. With this kind of GPU acceleration for XGBoost, you can get better performance, speed, accuracy, and reduced TCO, plus an improved experience when deploying and training models. Spinning up elastic Spark and XGBoost clusters in Dataproc takes about 90 seconds. (We’ll describe this process in detail later in the post.)Most machine learning (ML) workloads today in Spark run on traditional CPUs, which can be sufficient for developing applications and pipelines or working with datasets and workflows that are not compute-intensive. But once developers add compute-intensive workflows or machine learning components to the applications and pipelines, processing times lengthen and more infrastructure is needed. Even with scale-out compute clusters and parallel processing, model training times still need to be reduced dramatically to accelerate innovation and iterative testing.This advancement to GPU acceleration with XGBoost and Spark on Dataproc is a big step forward to make distributed, end-to-end ML pipelines an easier process. We often hear that Spark XGBoost users run into some common challenges, not only in terms of costs and training time but also with installing different packages required to run a scale-out or distributed XGBoost package on a cloud environment. Even if the installation is successful, reading a large dataset into a distributed environment with optimized partitioning can require multiple iterations. The typical steps for an XGBoost training include reading data from storage, converting to DataFrame, then moving into XGBoost’s D-matrix form for training. Each of these steps depends on CPU compute power, which directly affects the daily productivity of a data scientist.See the cost savings for yourself with a sample XGBoost notebook You can use this three-step process to get started:Download the sample dataset and PySpark application filesCreate a Dataproc cluster with an initialization actionRun a sample notebook application as shown on the benchmark clustersBefore you start a Dataproc cluster, download the sample mortgage dataset and the PySpark XGBoost notebook that illustrates the benchmark shown below. The initialization action will ease the process of installation for both single-node and multi-node GPU-accelerated XGBoost training. The initialization step has two separate scripts. First, initialization script.sh will pre-install GPU software that includes CUDA drivers, NCCL for distributed training, and GPU primitives for XGBoost. Second, rapids.sh script will install Spark RAPIDS libraries and Spark XGBoost libraries on a Dataproc cluster. These steps will ensure you have a Dataproc cluster running and ready to experiment with a sample notebook.Saving time and reducing costs with GPUsHere’s the example that produced the numbers we noted above, where training time—and, as a result, costs—go down dramatically once XGBoost is accelerated:Click to enlargeHere are the high-level details of this GPU vs. CPU XGBoost training comparison on Dataproc:Once you’ve saved this time and cost, you can focus on making models even smarter by training them with more data. While being smarter, you can also be faster by progressing sooner to the next stage in the pipeline.Stay tuned for additional capabilities and innovations coming with the release of Spark 3.0 later in the year.For more on AI with NVIDIA GPUs, including edge computing and graphics visualization, check out these on-demand online sessions: Google Cloud AutoML Video and Edge Deployment and Building a Scalable Inferencing Platform in GCP.
Quelle: Google Cloud Platform
Day in and day out, our Google Cloud partners work tirelessly to help make our customers as successful as possible, and we want to share our gratitude. Today, we’re honored to recognize the hard work these partners do through our 2019 Partner Awards.Please join us in congratulating our 2019 winners.Click to enlargeWe’re so grateful for the ways our partners are supporting the needs of our customers, and we look forward to welcoming many new partners into our network in 2020. To learn more about our program, find a partner, or become one, visit our partner page.
Quelle: Google Cloud Platform
Die Astronauten bekommen zwei Fahrzeuge in die Garage auf dem Mond gestellt. (Mondlandung, Technologie)
Quelle: Golem
Im Gerichtsverfahren der Facebook-Tochter Whatsapp gegen den Trojaner-Hersteller NSO kommen neue Details ans Licht. (Facebook, Instant Messenger)
Quelle: Golem
Dells Latitude 7220 ist klobig, hält aber selbst ungeschickte Redakteure aus, wenn sie noch keinen Kaffee gehabt haben. Wir bestätigen das. Ein Test von Oliver Nickel (Dell, Intel)
Quelle: Golem
Die Atreus ist eine kleine programmierbare und wahrscheinlich höchst gewöhnungsbedürftige Tastatur. (Tastatur, Eingabegerät)
Quelle: Golem