Over a million on-premises SQL Server databases have moved to Azure, representing a massive shift in where customers are collecting, storing, and analyzing their data.
Modernizing your databases provides the opportunity to transform your data architecture. SQL Server on Azure Virtual Machines allows you to maintain control over your database and operating system while still benefiting from cloud flexibility and scale. For some, this represents a step in the journey to a fully-managed database, while others choose this deployment option for compatibility with on-premises workloads such as SQL Server Reporting Services.
Whatever the reason, migrating SQL workloads to Azure Virtual Machines is a popular option. Azure customers benefit from our unique built-in security and manageability capabilities, which automate tasks like patching and backups. In addition to providing these unparalleled innovations, it is important to provide customers with the best price-performance possible. Once again, SQL Server on Azure Virtual Machines comes out on top.
SQL Server on Azure leads in price-performance
GigaOm, an independent research firm, recently published a study comparing throughput performance between SQL Server on Azure Virtual Machines and SQL Server on AWS EC2. Azure emerged as the clear leader across both Windows and Linux for mission-critical workloads, up to 3.4 times faster and up to 87 percent less expensive than AWS EC2.1
The images above are performance and price-performance comparisons from the GigaOm report. The performance metric is throughput (transactions per second, tps); higher performance is better. The price-performance metric is three-year pricing divided by throughput (transactions per second, tps), lower price-performance is better.
With Azure Ultra Disk, GigaOm was able to achieve 80,000 input or output per second (IOPS) per single disk, maxing out the virtual machine’s throughput limit, and well exceeding the capabilities of AWS provisioned IOPS.2
A key reason why Azure price-performance is superior to AWS is Azure BlobCache, which provides free reads. Given that most online transaction processing (OLTP) workloads today come with a ten-to-one read-to-write ratio, this provides customers with significant savings.
Unmatched innovation from the team that brought SQL Server to the world
With a proven track record over 25 years, the engineering team behind SQL Server continues to drive security and innovation to meet our customers’ changing needs. Whether executing on-premises, in the cloud, or on the edge, the result is the most comprehensive, consistent, and secure solution for your data.
Azure SQL Virtual Machines offer unique built-in security and manageability, including automatic security patching and automated high-availability, and database recovery to a specific point in time. Azure’s unique security capabilities include advanced data security for SQL Server on Azure Virtual Machines, which enables both vulnerability assessments and advanced threat protection. Customers self-installing SQL Server on virtual machines in the cloud can now register with our resource provider to enable this same functionality.
Get started with SQL in Azure today
Migrate from SQL Server on-premises to SQL Server 2019 in Azure Virtual Machines today. Get started with preconfigured Azure SQL Virtual Machine images on Red Hat Enterprise Linux, SUSE Linux Enterprise Server, Ubuntu, and Windows in minutes. Take advantage of the Azure Hybrid Benefit to reuse your existing on-premises Windows server and SQL Server licenses in Azure for significant savings.
When you add it up, SQL databases are simply best on Azure. Learn more about why SQL Server is best on Azure, and use a $200 in Azure credits with a free account3 or Azure Dev or Test credits4 for additional cost savings.
1Price-performance claims based on data from a study commissioned by Microsoft and conducted by GigaOm in October 2019. The study compared price performance between SQL Server 2017 Enterprise Edition on Windows Server 2016 Datacenter edition in Azure E64s_v3 instance type with 4x P30 1TB Storage Pool data (Read-Only Cache) + 1x P20 0.5TB log (No Cache) and the SQL Server 2017 Enterprise Edition on Windows Server 2016 Datacenter edition in AWS EC2 r4.16xlarge instance type with 1x 4TB gp2 data + 1x 1TB gp2 log. Benchmark data is taken from a GigaOm Analytic Field Test derived from a recognized industry standard, TPC Benchmark™ E (TPC-E). The Field Test does not implement the full TPC-E benchmark and as such is not comparable to any published TPC-E benchmarks. The Field Test is based on a mixture of read-only and update intensive transactions that simulate activities found in complex OLTP application environments. Price-performance is calculated by GigaOm as the cost of running the cloud platform continuously for three years divided by transactions per second throughput. Prices are based on publicly available US pricing in West US for SQL Server on Azure Virtual Machines and Northern California for AWS EC2 as of October 2019. The pricing incorporates three-year reservations for Azure and AWS compute pricing, and Azure Hybrid Benefit for SQL Server and Azure Hybrid Benefit for Windows Server and License Mobility for SQL Server in AWS, excluding Software Assurance costs. Price-performance results are based upon the configurations detailed in the GigaOm Analytic Field Test. Actual results and prices may vary based on configuration and region.
2Claims based on data from a study commissioned by Microsoft and conducted by GigaOm in October 2019. The study compared price-performance between SQL Server 2017 Enterprise Edition on Windows Server 2016 Datacenter edition in Azure E64s_v3 instance type with 1x Ultra 1.5TB with 650MB per sec throughput and the SQL Server 2017 Enterprise Edition on Windows Server 2016 Datacenter edition in AWS EC2 r4.16xlarge instance type with 1x 1.5TB io1 provisioned log + data. Benchmark data is taken from a GigaOm Analytic Field Test derived from a recognized industry standard, TPC Benchmark™ E (TPC-E). The Field Test does not implement the full TPC-E benchmark and as such is not comparable to any published TPC-E benchmarks. The Field Test is based on a mixture of read-only and update intensive transactions that simulate activities found in complex OLTP application environments. Price-performance is calculated by GigaOm as the cost of running the cloud platform continuously for three years divided by transactions per second throughput. Prices are based on publicly available US pricing in north Europe for SQL Server on Azure Virtual Machines and Ireland for AWS EC2 as of October 2019. Price-performance results are based upon the configurations detailed in the GigaOm Analytic Field Test. Actual results and prices may vary based on configuration and region.
3Additional information about $200 Azure free account available at https://azure.microsoft.com/en-us/free/.
4Dev or Test Azure credits and pricing available for paid Visual Studio subscribers only.
Quelle: Azure
Published by